
LYAPUNOV EXPONENTS FROM CHUA'S CIRCUIT TIME

SERIES USING ARTIFICIAL NEURAL NETWORKS

J.Jesfis Gonzdlez F., Ismael Espinosa E., and

Lab. de Ciberndtica, Depto. de Fisica, Fac. de Ciencias

Universidad Nacional Autdnoma de Mdxico

Alberto Fuentes M.

lnstituto de Ciencias Nucleates

Universidad National Autdnoma de Mgzico

Abstract

In this paper we present the general problem of identifying if a nonlinear dynamic sys-

tem has a chaotic bel_avior. If the answer is positive the system will be sensitive to small

perturbations in the ihitial conditions which will imply that there is a chaotic _.ttractor in
its state space. A particular problem would be that of identifying a chaotic oscillator. We

present an example of three well known different chaotic oscillators where we have knowledge

of the equations that govern the dynamical systems and from there we can obtain the corre-

sponding time series. In a similar example we assume that we only know the time series and,

finally, in another example we have to take measurements in the Chua's circuit to obtain

sample points of the time series. With the knowledge about the time series the phase plane

portraits are plotted and from them, by visual inspection, it is concluded whether or not

the system is chaotic. This method has the problem of uncertainty and subjectivity and for
that reason a different approach is needed. A quantitative approach is the computation of

the Lyapunov exponents. We describe several methods for obtaining them and apply a little
known method of artificial neural networks to the different examples mentioned above. We

end the paper discussing the importance of the Lyapunov exponents in the interpretation of

the dynamic behavior of biological neurons and biological neural networks.

1 Introduction

In the companion paper [1] we described some findings about biological oscillators that have been

presented in the recent literature. We also showed some examples of oscillator models. Here we

want to review some models of chaotic oscillators with the goal of extending the analysis to time

series (trains of action potentials) coming from biological oscillators where there are some hints

that they are chaotic.

There are many experimental situations where there is no idea of what the mathematical

model of a system could be or where the form of the equations is known but the parameters are

unknown. There is an extensive literature about methods for systems identification but they are
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usually limited to linear models. Since the conditions for chaotic behavior arise from the presence

of nonlinear elements, the use of linear methods is limited.

In recent years there have been many advances in the understanding of nonlinear dynamic

systems and that has produced many methods for identifying whether or not a given system

is chaotic. For testing these methods various simple chaotic systems have been discovered or

invented. In some of them the equations that govern the system are well known but in others

only some sort of approximation is known. In the former case, it is possible to generate the

corresponding time series with very high approximation, in the latter case, the measurements

yield a sampled version of the corresponding time series. Having at hand the equations and

the time series, or at least the time series, it is possible, in very different ways, to compute the

asymptotic properties of the system. Two measures are used for this: the Lyapunov exponents

in which a positive one indicates chaotic dynamics, arid the attractor's topological dimension

which indicates topological characteristics and is directly related to the number of non-negative

Lyapunov exponents [2].

It is usual to ascertain[ the existence of chaotic dynamic by means of visual inspection of the

phase plane portrait. However, such method presents a considerable amount of t uncertainty and

subjectiveness. Taking that into account, it is important to have a quantitative method like the

one provided by the computation of the Lyapunov exponents.

2 Lyapunov Exponents

To determine if a system possess chaotic dynamics it is necessary to know if it is sensitive to

small perturbations on the initial conditions. When this occurs it is then impossible to predict the

final state of the system after a finite time. To be able of characterizing a chaotic attractor it is

necessary to establish quantitative measures concerning the sensitivity to initial conditions. The

spectrum of Lyapunov exponents gives a method of quantifying the dynamics. The Lyapunov

exponents describe the average rate of growing or shrinking of small perturbations in different

directions in the state space. When the attractor has at least one positive exponent then it has

the property of being sensitive to the initial conditions and it is called a chaotic attractor.

There are several methods for computing the Lyapunov exponents. Wolf'et al. [3} were. the

first in suggesting a method to compute them directly from the time series, without knowing the

equations that govern the system's dynamics. Kurths and Herzel [4] proposed another algorithm.

However, in these algorithms the estimations are sensitive to the number of observations, to the

sampling frequency and to the noise in the observations [3]. Trying to avoid these problems,

Gencay and Dechert [5] designed an algorithm that computes the m Lyapunov exponents from

an unknown m-dimensional dynamic system directly from a few observations on the attractor,

in such a way that the estimation is robust even for certain amount of noise. This algorithm is

based on a result by Hornik et al. [6] in which they show that the m Lyapunov exponents of a

diffeomorphism that is' topologically conjugate to the process that generates the data, are also

the m Lyapunov exponents of that process. To obtain a robust estimation considering both few

observations on the attractor and the presence of noise, Gencay and Dechert [5] applied artificial

neural networks with a cascade architecture. Such procedure is a non-parametric estimation that

Hornik et al. [6] [7] have shown to be universal approximators, that is, they can asymptotically

approximate a function and its derivatives.
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3 Computation of the Lyapunov Exponents

The Lyapunov exponents are constants, except for a zero-measure set, and describe the direction

of nearby paths that converge or diverge in the state space of a dynamic system. The Lyapunov

exponents Xi are defined as the logarithm of the eigenvalues #i V i = 1,2,-. •, m of the symmetric

positive matrix

A_ = aim [y(x;t)_ry(x;t)] 1/2t , (1)t-.oo

where the matrix Y is dependent on the differential equation that characterizes the dynamical

system. A direct application of the above definition is not practical since the Y matrix grows
exponentially due to the fast convergence of the columns in the direction of g_eater expansion.

Using topological properties and an appropriate QR decomposition, the Lyapunov exponents are

found by computing

1 lim 1'_-1 ()_---.=- - In Rii , (2)
At t--_o_n j="-"_

where R, are the diagonal elements of the triangular matrix R.

An alternative to the aforementioned algorithm is the use of neural networks which are capable

of recovering a nonlinear map from a time series of iterates [8]. Here an unknown function is

estimated and then it is possible to compute the Lyapunov exponents using the properties of the

dynamic system [5].
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FIG. 1. Phase Plane Portraits for the Logistic Map, the H6non Map, and the

Lorenz System.
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4 Examples of chaotic oscillators

To be able of testing the effectiveness of the Lyapunov exponents one has to have at hand dy-

namical systems with proved chaotic behavior. Many mathematical model systems are known,

for instance: H_non, Rossler-chaos, Lorenz, Rossler- hyperchaos, Mackey-Glass, and others [3].

Physical model systems ar k more difficult to produce, however we have the Belousov-Zhabotinsky

chemical reaction [9] and Chua's nonlinear circuit family [10]. Obviously, there lare real physical

chaotic systems but they are extremely complex as it is the case of atmospheric turbulence.

TABLE I. True Lyapunov Exponents, equations representing the chaotic systems,

initial conditions and parameters.

True Lyapunov Exponents

Logistic map H6non map Lorenz system

0.673 0.440 1.51

-1.620 0.00

-22.5

xtTi "_- #xt(1 - xt) xt = 1 - ax2t + yt ic =a(x - y)

y_ = bxt _ = x(b- z) - y

= xy - cz

xo=O.3, tt=4.0 xo=O.l,yo=O.O xo=O.O, yo= 1.1,zo=O.O

a = 1.4, b = 0.3 a = 16.0, b = 45.92, c = 4.0

TABLE II. Estimated Lyapunov Exponents. Logistic Map (q = 5, T = 100).

Hdnon Map (q = 10, T = 200). Lorenz System (q = 15, T = 1000). The error is less

than lxl0 -3. The non-spurious Lyapunov exponents are shown in boldface.

Estimated Lyapunov Exponents

p Logistic map
1 0.6794

2 0.6401

-6.7823

5

0.6350

-2.4378

-2.4930

0.6434

-1.61106

-1.7342

-5.0200

0.6790

-0.9073
i

-1.3544

-1.8468

-3.2313

H_nonmap

0.3670

-1.5673

0.4502

-1.7331

-2.8164

0.4119

-1.4803

-3.3658

-5.2263

0.4385

-1.5473

-1.4859

-1.7651

-2.5605

Lorenz system

1.7285

0.0411

-23.72

1.5910

-0.0710

-20.973

-80.325

1.4799

0.0067

-20.977

-60.702

-92.584
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We divided this sectio_ of examples in three parts. In the first part the ordinary differential

equations for the Lorenz rhodel were integrated using the SDRIV2 subroutines [orm Kahaner et

al. [12]. For the QR decomposition use used the subroutines in [13]. In the second and third parts

we computed the Lyapunov exponents by means of the neural networks approach [5].

For the first part of the section we show the results of computing the Lyapunov exponents

for mathematical model systems with well known chaotic dynamics [3] [5] [8]. We computed the

Lyapunov exponents for the Logistic Map, for the H_non map and for the Lorenz system [3] [5].

The corresponding phase plane portraits are shown in FIG. 1, and the equations, parameters and

computed true values of the Lyapunov exponents are shown in TABLE I above.

For the second part of the section we show the results when we assume that for the same

chaotic systems than above, the equations are not known, only the time series. In TABLE II we

show the computed Lyapunov exponents where the presence of one positive exponent indicates

that the system is chaotic.

According to the established notation for neural network architectures [11], p represents the

number of nodes in the input layer and q represents the number of nodes in the hidden layer.

The output layer has one node. The error is the quadratic average summation of the differences

between the real and the estimated values for the time series, being T the total number of sample

points in the sequence.

For the third part of the section we show the results obtained when we used a nonlinear circuit

of the Chua's family with the parameters, components and initial conditions shown in FIG. 2. The

temporal series was acquired by means of a digital storage scope, the x-coordinate is the voltage

in the linear capacitor C1 and the y-coordinate is the voltage in the linear capacitor C2. A part

of the phase plane portrait is also shown in FIG. 2, from it the temporal series was obtained using

a sampling frequency of 500 Hz.
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FIG. 2. Nonlinear Circuit of the Chua's Family and a part of its phase plane

portrait that was plotted using as state variables the voltages in the capacitors C1 and

C2. The phase plane portrait changes when the parameters in the circuit are varied

between the limits denoted in the diagram.

The estimated Lyapunov exponents for the Chua's circuit are shown in TABLE III, when using

the estimation for q = 15 and T = 2500. The error was less than 5x10 -2. Notice that 11 is a

positive exponent which means that the dynamic behavior of the circuit is chaotic, as expected.
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TABLE III. Estimated Lyapunov Exponents for the Chua's Circuit.

i Estimated Lyapunov Exponents

p Chua's Circuit

A1=+4.07216

A2---0.32160

Aa---3.58462

5 Concluding Remarks

We have shown well known examples of mathematical models of chaotic attractors: Logistic,

H_non, and Lorenz. We also showed an electronic model of a chaotic attractor: a circuit of

the Chua's family. In all these examples we computed the Lyapunov exponents as a measure of

the system's sensitivity to small perturbations in the initial conditions. For the example where

we know the equations we used the standard method; for the other two examples, we used the

method of Gencay and Dechert [5] that applies a neuronal network algorithm. We went from the

easier examples to the difficult one, that is, the Chua's circuit where the time series is obtained

from direct measurements in the circuit. In the former examples the true values of the Lyapunov

exponents are known whereab in the Chua's circuit the Lyapunov exponents are estimated and

to this has to be added the differences or variations, for any reason, in the parameters for the

circuit's components. The justification for such trouble is that in a real chaotic System there is a

complexity even worse that in the electronic model. Therefore, the circuit provides a very valuable

experience that afterwards can benefit the understanding of the real chaotic attractor.

Recent experimental evidence points to biological neurons and biological neural networks as

very likely sources of chaotic attractors. As in the case of chaotic chemical reactions the biological

significance given to such behavior is speculative [9] [14]. Nevertheless, the application of the tech-

niques described in this paper might be very useful for interpreting data from neurophysiological

experiments where the electrical activity from many neurons is recorded simultaneously.

Similar to Chua's circuit situation, due to the usual difficult conditions of neurophysiologieal

experimentation, in a biological neural n,_twork we can only obtain a short duration record of the

compound time series (train of action potentials). The individual time series have to be separated

and that procedure produces and additional source of uncertainty and every tool available for

interpreting the results is welcomed [15].

As a very simple example (for details see companion paper [1]) let us consider the rhythmic

firing single neuron (1) shown in the upper plot in FIG. 3. This time series was obtained from the

simulation of a mathematical model for a single neuron and two of its phase plane portraits for

two different physiological parameters (V - f, V - h) chosen as state variables show very clearly

the possibility of chaotic behavior. In the lower plot in FIG. 3 we show another simulation of

the rhythmic firing of a neuron (2) that belongs to a recurrent-ring network composed of single

neurons like the ones given in (1). From the two phase plane portraits we cannot conclude that

the neuron (2) in the network is chaotic and the conclusion about neuron (1) required of an

expert. This ambiguity can be surmounted if the Lyapunov exponents are computed for these
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time series and from there the importance of making such calculations and having experimental

testing circuits for imprgving the confidence in the results.

FIG. 3. (1) Rhytmically firing single neuron. (2) Rhytmically firing neuron be-

longing to a network formed with type (I) neurons.

On the other hand, in biological experiments there are problems similar to the ones present

when making measurements in the Chua's circuit. When doing an extracellular recording, the

duration of it is limited to a few minutes and afterwards a considerable amount of preprocessing is

required to get to the individual contribution of each neuron recorded [16] [l 7]. The calculation of

the Lyapunov exponents for these individual contributions could be added to help understanding

the functional role of oscillatory neurons and oscillatory networks. That is the work thai we are

about to pursue.
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